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ABSTRACT

Ab initio quasiparticle gaps, self-energy corrections, exciton Coulomb energies, and
optical gaps of Si nanocrystals are calculated using the higher-order finite difference pseu-
dopotential iethod. The calculations are perforned in real space on hydrogen-passivated
Si clusters with diameters up to 30 A (> 1000 atoms). The size-dependent self-energy
correction is enhanced substantially compared to bulk, and quantum confinement and
reduced electronic screening result in appreciable excitonic Coulomb energies. Calculated
optical gaps are in very good agreement with absorption data from Si nanocrystals.

INTRODUCTION

Understanding the role of quantum confinement (QC) in altering optical properties of
semiconductor materials with reduced dimensions is a problem of both technological and
fundamental interest. In particular, the discovery of visible luminescence from porous
Si {1] has focused attention on optical properties of coufined systems. Although there is
still debate on the exact mechanism of photoluminescence in porous Si, there is a great
deal of experimental and theoretical evidence that supports the important role played
by QC in producing this phenomenon [2, 3]. Excitations in confined systems, like Si
quantum dots as the building blocks of porous Si, differ from those in extended systems
due to QC. In particular, the components that comprise the excitation energies, such as
quasiparticle and exciton binding energies change significantly with the physical extent
of the system. So far, most calculations that model semiconductor quantum dots have
been of an empirical nature [4 — 8] owing to major challenges to simulate these systems
from first principles. While empirical studies have shed some light on the physics of
optical excitations in semiconductor quantum dots, one often has to make assumptions
and approximations that may or may not be justified. Efficient and accurate ab initio
studies are necessary to achieve a better microscopic understanding of the size dependence
of optical processes in semiconductor quantum dots.

The main problem regarding the use of empirical approaches for semiconductor quan-
tum dots centers on the transferability of the bulk interaction parameters to the nanocrys-
talline environment. The validity of this assumption, which postulates the use of fitted
bulk parameters in a size regime of a few nanometers, is not clear, and has been questioned
in recent studies [9]. More specifically, QC-induced changes in the self-energy corrections,
which may affect the magnitude of the optical gaps significantly, are neglected in empiri-
cal approaches by implicitly assuming a “size-independent” correction that corresponds to
that of the bulk. It follows that a reliable way to investigate optical properties of quantum
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dots would be to model them from first principles with no uncontrolled approximations
or empirical data. However, there have been two major obstacles for the application of ab
initio studies to these systems. First, due to large computational demand, accurate first
principles calculations have been limited to small system sizes, which do not correspond
to the nanoparticle sizes for which experimental data are available. Second, even accurate
ab initio calculations performed within the local density approximation (LDA) suffer from
the underestimate of the band gap [10].

With recent advances in electronic structure algorithms [11, 12] and computational
platforms, and alternative formulations of the optical gaps suitable for confined systems,
the above-mentioned challenges for ab initio studies of quantum dots can be overcome.
The use of a new electronic structure algorithm, the higher-order finite difference pseu-
dopotential method [11]. implemented on massively parallel computational platforms al-
lows us to model a cluster of more than 1,000 atomws in a straightforward fashion (13].
As for the second problem regarding the underestimate of the band gap due to LDA. the
confined nature of the quantum dots makes it possible for an alternative formulation of
the fundamental quasiparticle gaps.

CALCULATIONAL METHODS

Our calculations were performed in real space using the higher-order finite difference
pseudopotential method [11]. Quantum dots were modeled by spherical bulk-terminated
Si clusters passivated by hydrogens at the boundaries (Fig. 1). We used Troullier-Martins
pseudopotentials [16] in nonlocal [17] and local forms for Si aud H, respectively. All caleu-
lations were performed within LDA using the exchange correlation functional of Ceperley
and Alder [18]. The kinetic energy in the finite difference expression was expanded up
to twelfth order in the grid spacing h chosen to be 0.9 a.n. No change in the calculated
gap values was found upon decreasing h to 0.75 aa. The wavefunctions were required
to vanish outside a spherical domain. which was at least 7.5 a.1. away from the last
shell of Si atoms. The diagonalizations were performed using the generalized Davidson
algorithm with dynamical residual tolerance. Typically. 10 to 15 diagonalizations were
needed to obtain the self-consistent charge density irrespective of the size of the system.
The Hartree potential was solved by discretizing the Poisson equation and matching the
boundary potential with that of a multipole expansion of the charge density with angu-
lar momentum I = 9 to 20. We considered quantum dots containing 65 to 1,005 atoms
requiring the self-consistent solutions of 100 to 1,700 eigenpairs. With the grid spacing
and domain size chosen as described above, the Hamiltonian sizes ranged from 25,000 to
250,000. All calculations were performed on a Cray C-90. except for the three largest
cases SiggsHire. SisesHaze. and Sisg;Ho0, which were run in parallel on a Cray-T3E ma-
chine. Parallel implementation was performed using MPI with a domain decomposition
approach, in which the whole physical domain was mapped on to 48 to 128 processors.
For the largest cluster SizgsHago. the performance on 128 processors was near 30 GFlops.
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Figure 1: Atomic structure of a Si quantum dot with composition SisosHaze. The
gray and white balls represent Si and H atoms, respectively. This bulk- truncated
Si quantum dot contains 25 shells of Si atoms and is 27.2 A in diameter.

AB INITIO QUASIPARTICLE GAPS

For an n—electron systeni. the quasiparticle gap ¢ can be expressed in terms of the
ground state total energies E of the (n+1)—. {(n — 1) and n—electron systems as

5;“’

i

E(n+ 1)+ E(n—1) — 2E(n) (1)
= el +%, ) (2)

where ¥ is the self-energy correction to the HOMO-LUMO gap e‘q“““ obtained within
LDA. This definition is quite convenient for the calculation of the quasiparticle gap,
as it is possible to excite individual electrous or holes from the ground state electronic
coufiguration of a confined system. The calculation of £ requires the self-counsistent
solutions of three different charge configurations of each qua,utum dot. The computational
demand of this approach can be reduced significantly by using the wavefunctions of the
neutral cluster to extract very good initial charge densities for the self-consistent solutions
of the charged systems. With a real-space method, total energies for charged (n+1)— and
(n ~ 1)—electron systems can be calculated in a straightforward fashion without the need
for a compensating background charge that would be necessary for plane wave calculations
with a supercell geometry.

Eq. (1) yields the correct quasiparticle gap e3P, if the ezact exchange-correlation
functional is used. Within LDA, in the limit of very large systems (n — o00), the gaps
calculated using Eq. (1) approach the HOMO-LUMO gap EHL {14]. However, for siall
systems, Eq. (1) captures the correction to the LDA HOMO- LUMO gap quite ar(urarely
(Table I) when compared with available GW calculations [15]. Small deviations appear
as the system size reaches approximately 1,000 atoms in our calculations.
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Figure 2: Calculated quasiparticle (o) and HOMO-LUMO gaps (+). and self-
energy corrections (x) as a function of the quantum dot diameter d (in A). The
solid lines are power-law fits to the calculated data approaching the corresponding
bulk limits. For small deviations from the fits for large system sizes, see the text.

The size dependence of the quasiparticle and LDA HOMO-LUMO gaps, aund self-
energy corrections are shown in Fig. 2. Both gap values and self-energy corrections are
enhanced substantially with respect to bulk values, and are inversely proportional to the
quantum dot diameter d as a result of QC. Specifically. e (d) — £k ghand () — G
and £(d) — Zpui scale as d=12 d~tt and d7!9, respectively. The quasiparticle gaps shown
in Fig. 2 are significantly higher compared to the gap values obtained in earlier semi-
empirical calculations [4 — 7). The main reason for this is the significant. enhancement of
electron self-energies due to QC, which cannot be properly taken into account in semi-

empirical approaches.

Table 1: HOMO-LUMO and quasiparticle
gaps ¢ (Eq. 1) calculated for hydrogenated
Si clusters compared to quasiparticle gaps
calculated within the GW approximation
[15]. All energies are in eV.

ek ew GW
SiHy 7.9 12.3 12.7
SioHg 6.7 10.7 10.6
SigH ) 6.0 9.5 9.8

SiisHao 4.4 7.6 8.0




CALCULATIONS OF THE EXCITON COULOMB ENERGY

Since the quasiparticle gap refers to the energy needed to create a non-interacting
electron-hole (e — h) pair, one cannot compare directly to measurements of the optical
gap. This is a real issue for quantum dots in which the exciton radius becomes compa-
rable to the size of the dot. QC in nanostructures enhances the bare exciton Coulomb
interaction, and also reduces the electronic screening so that the exciton Coulomb energy
Ecou becomes comparable to the quasiparticle gap. Therefore, in order to extract the
optical gaps P = e — Ecou, the exciton Coulomb energy needs to be calculated ac-
curately. Coxnpa,led to Ecouls exciton exchange-correlation energies are much smaller for
the quantum dots studied in this work, and will therefore be neglected.

A crude, yet commonly used. approximation to Ec,y comnes from the effective mass
approximation (EMA) [19]. In the EMA, one assunes (i) an infinite potential barrier at
the boundary of the quantum dot, and (ii) envelope wavefunctions of the form ¥(r) ~
%Sin(27rr) /d for a noninteracting e — h pair. This yields (in a.u.) Ecoy = 3.572/ed. EMA,
though conunonly used, cannot be expected to yield accurate exciton Coulomb energies,
since in this approximation the microscopic features of the electron-hole wavefunctions
inside the quantum dot are neglected, and the wavefunctions are constrained to vanish
abruptly outside the quantum dots. instead of decaying relatively slowly into the vacuum.
We have, therefore, calculated Fg,, directly using ab initio pseudowavefunctions. The
exciton Coulomb energy can be written as

Eeou = [drslts(ra) V2 (ry)
/drllwrf(rl)rl (lrﬁ—l(rlwr)‘/\fixﬂ<r( )
J[e e ) e Plonlea) P e , (3)

|r —ry)

il

In this expression, V! and V! are screened and unscreened potentials due to the hole,
1, and ¢y, are the electron and hole wavefunctions, and e~} is the inverse of the microscopic

dielectric matrix. If we formally define ¢! as

1
-1 = -1
e (ry.r)——dr = § ' (ry. 1) ——m—m, 4
[ (k3. 03) e (4)
then the exciton Coulomb energy can be written as
r r
EC(,“]—[/_I ry.r2 |w(( l)l Idh( 2)‘ lrldrg. (5)
|l‘1 — 12|

First, we set é = 1, and calculated the unscreened Ecq,y. The results are shown in
Fig. 3 along with the predictions of the EMA and recent empirical calculations [20]. The
ab initio and empirical calculations for the unscreened Coulomb energy are in quite good
agreement with each other. both predicting smaller Coulomb energies and a softer power-
law decay compared to the EMA. In particular, fitting the calculated data to a power law
of the diameter as d=%, we find 3 = 0.7.

An accurate calculation of Ecyy requirm the inverse dielectric matrix é7!(ry,r3) in
Eq. (5). However, ab initio calculation of €71(ry,rz) is computationally very demanding.
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Figure 3: Unscreened exciton Coulomb energies as a function of the quan-
tum dot diameter d (in A) calculated by (i) effective mass approximation
(dashed line), (ii) direct empirical psendopotential calculations (A from
Ref. [20}). (iii) direct ab initio pseudopotential calculations (x) as ex-
plained in the text. The solid lines are power-law fits to the calculated
data.

Earlier calculations used either the bulk dielectric constant or the reduced dielectric con-
stant of the quantum dot for all ¢ — h distances. These are quite crude approximations,
since the screening is different at different length scales due to the wavevector dependence
of €. For example, when r; and r; in Eq. (5) are very close to each other. there will
be practically no screening, and & & 1. Since both the hole and electron wavefunctions
are well localized towards the center of the quantum dot, the screening will be reduced
significantly, resulting in larger Coulomb energies compared to the case of using a single
dielectric constant for all distances. We improve on these approximations by explicitly
using the wavefunctions as calculated by our pseudopotential approach and a simplified,
but realistic, dielectric function that takes spatial variations of € into account.

To calculate the screening dielectric functions €(ry,ra) of a particular quantum dot,
we proceeded as follows: First, we applied spatially modulated electric fields at several
wavevectors to calculate the g—dependent polarizability a(q) using a finite-field method.
The g—dependent dielectric function €(q) was then obtained using a dielectric sphere
model [21]. The results for é(q) of the Sig;Hzs quantum dot are shown in Fig. 4. After
fitting the calculated &(q) to a rational polynomial function of ¢ and Fourier-transforming
to real space [22]. we obtained the dielectric function &(r = [ry — ra|). Implicitly, we are
assuming spatial isotropy in writing é(ry.rz) ~ &(r = |ry — rg]). As shown in Fig. 4,
the calculated &(q) has a very sharp drop to = 1 beyond ¢ = 0.2 a.u., which corresponds
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Figure 4: Wavevector dependence of the dielectric function for the Sig7Hzg
quantum dot.

roughly to the wavevector set by the linear dimension (or diameter) of this quantum dot.
In fact, this sharp drop is typical for all quantum dots studied. In real space, this implies
that the e — h interaction is very inefficiently screened inside the dot. This results in
substantial excitonic Coulomb energies.

OPTICAL GAPS AND COMPARISON TO EXPERIMENT

The resulting optical gaps 53"‘ = €ff — Ecou along with the quasiparticle gaps and
experimental absorption data [23] from Si:H nanocrystals are shown in Fig. 5. Although
the calculated quasiparticle gaps are ~ 0.6 to 1.0 eV larger than the experimental ab-
sorption data, the calculated optical gaps are in excellent agreement with experiment. At
this point, an interesting observation can be made about the good agreement of previous
semi-empirical calculations with experiment [2, 4, 6]. In the above semi-empirical ap-
proaches, it is the underestimate of both the quasiparticle gaps and the exciton Coulomb
energies (through the use of a static dielectric constant of either the bulk or the quantum
dot), that puts the calculated values in good agreement with experiment. As a matter
of fact, the bare gaps of Refs. [4] and [6] without the exciton Coulomb energies are
in better agreement with the experiment. Our present results demonstrate that (i} the
quasiparticle gaps in Si quantum dots are actually higher than previously thought, and
(ii) the exciton Coulomb energies, because of the wavevector dependence of the dielectric
response function €(r;, rz), are higher than previously calculated, resulting in optical gap
values that are in good agreement with the experimental absorption data.
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Figure 5: Calculated quasiparticle gaps (dotted line), optical gaps, and
experimental absorption data from Si:H nanocrystals (x and ¢ from Ref.
[23]) as a function of the quantum dot diameter d (in A). The two sets
of experimental data (x and o) differ by the method to estimate the
nanocrystal size.
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